GHRP 2: Growth Hormone Releasing Peptide
Purity: 98% (HPLC on request)
Molecular Formula: C42H50N8O5 Molecular Weight: 749.9 CAS No.: 87616-84-0
Sequence: H-D-Ala-D-2-Nal-Ala-Trp-D-Phe-Lys-NH2

Description
Growth Hormone Releasing Peptide-2 (GHRP 2) is a peptide made up of just six amino acids, which stimulates secretion of endogenous GH. Research shows GHRP 2 can stimulate the pituitary to increase secretion of GH by 7-15 times, stimulating ghrelin receptors to promote appetite. GHRP 2 acts as a synthetic ghrelin analogue that stimulates the release of an endogeneous growth hormone within the somatotropes of the anterior pituitary. Specifically, GHRP 2 will increase the number of somatotropes in a GH pulse by limiting the amount of somatostatin present while standard GHRH increases the amplitude at which the pituitary cells pulse.
The main effects of GHRP 2 are GH secretion, appetite enhancement, fat mass decrease and muscle mass increase, lowering of cholesterol level, skin and bone strengthening, protection of the liver and anti-inflammatory action. GHRP 2 possesses many repair properties that can be attributed to its immune boosting function. GHRP 2 has been shown to increase prolactin, aldosterone and cortisol levels and in some cases may not be the peptide of choice.

Protocol
Use 1 vial daily 5 days out of 7 mixed with saline.

Clinical Research
Growth Hormone Releasing Peptide -2 (GHRP 2), like ghrelin, increases food intake Blandine Laferrière, Cynthia Abraham, Colleen D. Russell, and Cyril Y. Bowers
Source: The publisher’s final edited version of this article is available free at J Clin Endocrinol Metab

Abstract: GHRP 2 is a synthetic agonist of ghrelin, the newly-discovered gut peptide which binds to the growth hormone (GH) secretagogue receptor. Ghrelin has been shown to have two major affects, stimulating both GH secretion and appetite/meal initiation. GHRP 2 has been extensively studied for its utility as a growth hormone secretagogue (GHS). Animal studies have shown its effect on food intake. We subcutaneously infused 7 lean, healthy males with GHRP 2 (1μg/kg/h) or saline for 270 minutes and then measured their intake of an ad libitum, buffet-style meal. Similar to what has been reported for ghrelin administration, our subjects ate 35.9±10.9 % more when infused with GHRP 2 vs. saline, with every subject increasing their intake even when calculated per kg body weight (136.0±13.0 kJ/kg vs 101.3±10.5 kJ/kg, p=0.008). The macronutrient composition of consumed food was not different between conditions. As expected, serum GH levels rose significantly during GHRP 2 infusion (AUC 5550±1090 μg/L/240 min vs. 412±161 μg/L/240 min, p=0.003). This data is the first to demonstrate that GHRP 2, like ghrelin, increases food intake, suggesting that GHRP 2 is a valuable tool for investigating ghrelin effects on eating behaviour in humans.